

Faculty of: Science & Life Sciences Course: Bachelor of Science (Physics) Semester: II Subject Code: MAE202-1C Subject Name: Basics of Mathematics-II

				h	ach our Vee	s/		Evaluation Scheme/ Semester									
Sr	Category	Subjec	Subject Name				Credi	Credi	redi Theory]	Futorial /	Total			
No	Category	t Code	Subject Name	Th	Tu	Pr	hours	L Points	Comprehensive Exams Evaluation		Internal End Semester Assessment Exams						
									Ma rks	Marks	Mar ks	Duration	Mark s	Duration	Mark s	Duratio n	
3	MINOR	MAE2 02-1C	Basics of Mathematics	3	-	2	5	4	10 10 05	Assignment MCQ Attendance	50	2	25	1	-	-	100

Course Objective :

The main objectives of this course are

- Use finite differences for interpolation, differentiation, etc.
- Methods to solve system of linear equations.
- Methods to solve differential equations.

COURSE CONTENTS

Course Outline for Theory

UNIT	COURSE CONTENT	TEACHING HOURS		
Ι	Curve Tracing in Cartesian Coordinates using Symmetry, Intercepts, Asymptotes and Sign of the Function, Curve Tracing in Parametric Equations using Intercepts, Tangents parallel to axes, Asymptotes parallel to the axes, Oblique Asymptotes and Extent to the Curve; Equations of Tangent and Normal to the Curve at a given point.			
П	First order and First-degree differential equations: basic concepts, Homogeneous and non-Homogeneous Equations, Exact differential equations, Integrating factors, Linear differential equations, Bernoulli equations, Differential equations of the first order and higher degree: Solvable for p, for x and for y, Clairaut's form of differential equations and Lagrange's form of differential equations.	15		
ш	Error in calculation and calculus of finite differences, interpolation. Significant error, Relative error, Estimation of error, Application of error formula. Forward differences, Backward differences, Shift operator, Polynomial in factorial notation.	15		

Course Outline for Practical

SR. NO	COURSE CONTENT	Lab Hours				
1	Problems based on errors					
2	Sketching of Cartesian curve, Parametric curves, Polar curves and reciprocal curves					
3	Relation between Cartesian, polar, spherical and cylindrical coordinates.					
	Problems on solution of ODE of order 1 and degree 1-I (Separable variables, homogeneous and non-homogeneous)					
	Problems on solution of ODE of order 1 and degree 1-II (Linear, Bernoulli and exact ODE)					
6	Problems on solution of ODE of order 1 and degree n					

TEACHING METHODOLOGY:

Conventional method (classroom blackboard teaching)

ICT Techniques

Teaching through the classroom

Variety of learning styles and tools (PowerPoint presentations, audio-visual resources, e-resources, seminars, workshops, models)

LEARNING OUTCOME:

After the successful completion of the course, students will be able to

- Analyse errors and have an understanding of error estimation.
- Graphing and optimization of the functions.
- Imagine three dimensional objects virtually.
- Analyse differential equations.
- Solve first ODES.

Units		Duration Hrs.)	Cre	ation of edits mbers)	Total Lecture Duration	Credit Calculation	
	Theory	Practical	Theory	Practical	Theory+ Practical	Theory+ Practical	
Unit – 1	15						
Unit – 2	15	30	3	1	45 + 30	4	
Unit – 3	15						
TOTAL	45	30	3	1	75	4	

Arrangement of lectures duration and practical session as per defined credit numbers:

Evaluation:

Theory Marks	Practical Marks	Total Marks		
75	25	100		

REFERENCE BOOKS:

- 1. Numerical Analysis and Computational Procedures', S. A. Moolah, New Central Book Agency (P) Ltd., Calcutta.
- 2. 'Elementary Numerical analysis', S. S. Sastry, Prentice Hall, New Delhi.
- 3. Analytical solid Geometry', Shanti Narayan and P. K. Mittal, S. Chand and Co. New Delhi.
- 4. 'Differential Calculus', Shanti Narayan and P. K. Mittal, S. Chand and Co. New Delhi.
- 5. Higher Engineering Mathematics, Thirty-fifth edition', B. S. Grewal, Khanna Publication.
- 6. 'The calculus with analytic geometry', Louis Leithod, Harper-Collins Pub.
- 7. 'The Elements of Co-ordinate Geometry', S. L. Loney, Mac Milan & Co.
- 8. 'A Textbook of Analytical Geometry of three dimensions', P. K. Jain, New Age International.
- 9. 'Elementary Treatise on Co-ordinate Geometry of three dimensions', R. J. T. Bell, Mac Milan Co.